banner
Центр новостей
Качество и производительность являются отличительными чертами нашей продукции.

Интегрированный атлас опухолей, иммунитета и микробиома рака толстой кишки

Sep 01, 2023

Nature Medicine, том 29, страницы 1273–1286 (2023 г.) Процитировать эту статью

18 тысяч доступов

116 Альтметрика

Подробности о метриках

Отсутствие наборов данных по мультиомному раку с обширной информацией о последующем наблюдении затрудняет идентификацию точных биомаркеров клинического результата. В этом групповом исследовании мы провели комплексный геномный анализ свежезамороженных образцов от 348 пациентов, страдающих первичным раком толстой кишки, включая секвенирование РНК, цельного экзома, глубокого Т-клеточного рецептора и гена 16S бактериальной рРНК на опухоли и сопоставленной здоровой ткани толстой кишки, дополненной с полногеномным секвенированием опухоли для дальнейшей характеристики микробиома. Цитотоксический признак экспрессии генов Т-хелперов 1 типа, называемый Иммунологическая константа отторжения, фиксирует наличие клонально разросшихся, обогащенных опухолью клонов Т-клеток и превосходит традиционные прогностические молекулярные биомаркеры, такие как консенсусный молекулярный подтип и классификации микросателлитной нестабильности. . Количественная оценка генетического иммуноредактирования, определяемая как меньшее количество неоантигенов, чем ожидалось, еще больше улучшила его прогностическую ценность. Мы определили сигнатуру микробиома, вызванную Ruminococcus bromii, связанную с благоприятным исходом. Объединив подпись микробиома и иммунологическую константу отторжения, мы разработали и утвердили комплексный показатель (mICRoScore), который идентифицирует группу пациентов с превосходной вероятностью выживания. Общедоступный набор данных мультиомики предоставляет ресурс для лучшего понимания биологии рака толстой кишки, который может способствовать открытию персонализированных терапевтических подходов.

Несмотря на то, что было проведено значительное количество исследований биомаркеров первичного рака толстой кишки, текущие клинические рекомендации в США и Европе (включая рекомендации Национальной комплексной онкологической сети и Европейского общества медицинской онкологии) опираются только на метастазы в опухолевых узлах. определение стадии и выявление дефицита репарации несоответствия ДНК (MMR) или микросателлитной нестабильности (MSI), в дополнение к стандартным клинико-патологическим переменным, для определения рекомендаций по лечению1,2. MSI вызывается соматической или зародышевой дефектностью генов MMR и приводит к накоплению соматических мутаций, неоантигенов, что приводит к иммунному распознаванию и высокой плотности инфильтрирующих опухоль лимфоцитов3.

Сила адаптивной иммунной реакции in situ, определяемая, например, оценкой плотности и пространственного распределения Т-клеток (иммунооценка), связана со снижением риска рецидива и смерти независимо от других клинико-патологических переменных, включая статус MSI4, 5.

Однако, несмотря на неопровержимые доказательства прогностического эффекта Immunoscore и других параметров, связанных с иммунитетом, при раке толстой кишки6,7, отсутствие связи между оценками иммунного ответа на основе экспрессии генов и выживаемостью пациентов в Атласе генома рака (TCGA) Исследовательское сообщество отметило когорту аденокарциномы толстой кишки (COAD)8,9,10. TCGA, благодаря богатству и тщательности геномных данных, представляет собой выдающийся набор данных для омического анализа; однако сбор комплексных клинических данных, включая результаты выживаемости, не был ни основной целью TCGA, ни практической возможностью ввиду его глобального масштаба и временных ограничений11. Таким образом, ограниченные данные последующего наблюдения за пациентами, связанные с TCGA-COAD и другими наборами данных TCGA, препятствовали статистически строгому анализу выживаемости11. Кроме того, TCGA не включал в себя специальные анализы для анализа репертуара Т-клеточных рецепторов (TCR) или характеристики микробиома, которые позже были выполнены с использованием данных массового секвенирования ДНК и РНК (RNA-seq) и включали лишь небольшое количество здоровых твердых тканей (например, здоровой толстой кишки). ) образцы12,13. Кроме того, поскольку TCGA первоначально сосредоточился на каталогизации геномных и молекулярных изменений, происходящих в раковых клетках, были введены критерии включения образцов, основанные на строгих ограничениях по чистоте опухолей14, что потенциально смещало популяцию в сторону менее иммунных или богатых стромой образцов опухолей.

0.1% in the tumor, which are at least 32 times higher in the tumor compared to normal) are highlighted. i, Correlation of proportion of tumor-enriched T cell clones in the tumor (in percent) with ICR score. Pearson's r and P value of the correlation are indicated in the plot. All P values are two-sided./p>12 per Mb. Overall P value is calculated by log-rank test. c, Scatter-plot of ICR score by genetic immunoediting (GIE) value for ICR-high and ICR-low samples. Number of samples in each quadrant is indicated in the graph. Gray area delineates ICR scores from 5–9. d, Kaplan–Meier for OS by IES. Censor points are indicated by vertical lines and corresponding table of number of patients at risk in each group is included below the Kaplan–Meier plot. Overall P value is calculated by log-rank test. e, Violin plot of IES by productive TCR clonality (immunoSEQ) (left) and MiXCR-derived TCR clonality (right). Spearman correlation statistics are indicated above each plot. Significance within ICR low and high is indicated. Center line, box limits and whiskers represent the median, interquartile range and 1.5× interquartile range, respectively. P values are two-sided, n reflects the independent number of samples./p> 2) (Fig. 5c and annotated in Supplementary Table 5). No major difference in α diversity (the variety and abundance of species within an individual sample) was observed between tumor and healthy samples (Extended Data Fig. 7b) and only a modestly reduced microbial diversity was observed in ICR-high versus ICR-low tumors (Extended Data Fig. 7b). Selenomonas and Selenomonas 3 were the taxa most significantly increased in ICR-high versus -low tumors (Fig. 5e, Extended Data Fig. 7c and Supplementary Table 6). In terms of survival analysis, the highest number of nominally significant associations was obtained using tumor data (rather than healthy colon data) and OS as the end point (Extended Data Fig. 7d and Supplementary Table 7)./p>20-fold coverage of at least 99% of targeted exons and >70-fold in at least 81% targeted exons. In healthy samples, sequencing achieved >20-fold coverage of at least 94% of targeted exons and >30-fold in at least 84% targeted exons. Adaptor trimming was performed using the tool trimadap (v.0.1.3). ConPair was run to evaluate concordance and estimate contamination between matched tumor–normal pairs. In eight of the pairs a mismatch was detected and for five pairs, a potential contamination was indicated. HLA typing data were used to validate these results. All potential mismatches and contaminations were excluded, retaining 281 patients for data analysis./p>2 µg) and sample selection was exclusively based on DNA availability. TCR sequencing was performed using extracted DNA of 114 primary tissue samples and ten matched healthy colon tissues with sufficient DNA available./p>0.1% were defined as tumor-enriched sequences, as previously implemented by Beausang et al.75. The fraction of tumor-enriched TCR sequences in the tumor was calculated by dividing the number of productive templates of tumor-enriched sequences by the total number of productive templates per tumor sample. Pearson's correlation coefficient between the fraction tumor-enriched TCR sequences and ICR score was calculated./p>1% in the general population. After these technical exclusion criteria, biological filters were applied, including selection of nonsynonymous mutations (frame shift deletions, frame shift insertions, inframe deletions, inframe insertions, missense mutations, nonsense mutations, nonstop mutations, splice site and translation start site mutations). The resulting number of variants/mutations per Mb (capture size is 40 Mb) per sample is referred to as the nonsynonymous TMB. Next, to identify most frequently mutated genes in our cohort that might play a role in cancer, we excluded variants that are predicted to be tolerated according to SIFT annotation or benign according to PolyPhen (polymorphism phenotyping). Finally, all artifact genes, which are typically encountered as bystander mutations in cancer that are mutated for example as a consequence of a high homology of sequences in the gene, were excluded76. The OncoPlot function from ComplexHeatmap (v.2.1.2) was used to visualize the most frequent somatic mutations./p>5% of the tumor samples) with frequencies detected in previously published datasets containing colon cancer samples (TCGA-COAD and NHS-HPFS) as well as reported cancer driver genes32 or colon oncogenic mediators38. First, we extracted genes with a nonsynonymous mutation frequency >5% in the AC-ICAM cohort. Subsequently, only genes that are likely involved in cancer development, as described in the section ‘Cancer-related gene annotation’, were retained. All artifact genes (mutations typically encountered as bystander mutations in cancer that are mutated for example as a consequence of a high homology of sequences in the gene), were excluded. Genes that have previously been reported as colon cancer oncogenic mediator38 or cancer driver gene for colorectal cancer (COADREAD)32 were also excluded. Finally, only genes with a mutation frequency <5% in the NHS-HPFS colon cancer cohort37 and <5% in TCGA-COAD36 were maintained. As a final filter, only genes that had a nonsynonymous mutation frequency of at least twofold in AC-ICAM compared to TCGA-COAD were labeled as potentially new in colon cancer./p> 0.4) or MSS (MANTIS score ≤ 0.4)./p> 500 nM, were used as criteria to infer neoantigens. Predicted neoantigens were used to calculate the GIE value. We calculated the GIE value by taking the ratio between the number of observed versus the number of expected neoantigens. The expected number of neoantigens was based on the assumption of a linearity between TMB and the number of neoantigens. We therefore assumed that samples that have a lower frequency of neoantigens than expected (lower GIE values), display evidence of immunoediting. A higher frequency of neoantigens than expected indicates a lack of immunoediting, see calculations section for details./p>60× coverage per sample. The median (across samples) of the average target coverage (per sample) was 76× (range of 50–92)./p> ±0.3. Clusters among the networks (groups of at least three correlated genera using the cutoffs specified above) were defined via a fast greedy clustering algorithm. All co-occurrence networks were made using the R package ‘NetCoMI (v.1.1.0) – Network Construction and Comparison for Microbiome Data’84 and visualized using Cytoscape (v.3.9.1)./p>0) and ‘low-risk’ (<0) groups as performed in the training set. Therefore, no cutoff optimization occurred in the validation phase./p>2 μg). Securing additional funds allowed us to perform WGS and 16S rRNA sequencing and to expand the WES and TCR analyses to any sample with sufficient DNA available. No specific power calculation was performed at that time and the targeted sample size was based on the estimated number of samples that could be retrieved from LUMC (n = 400), which compared favorably with the sample size of similar studies in the field./p>90% to detect a 10% mutational frequency in 90% of genes86./p>80% for an HR of 0.5 with a two-sided α of 0.05. With 154 OS events in the whole cohort, our study has a power of 90% for an HR of 0.59 (assuming two group of equal size c) and a power of 90% for an HR of 0.57 (assuming groups with unequal sample size, 2:1) with a two-sided α of 0.05./p>

0.1% in the tumor, that are at least 32 times more abundant in the tumor compared to the normal./p>12/Mb) versus Low (<12/Mb) TMB. b, Same as a, but only including ICR Medium. c, Kaplan–Meier curves for OS by GIE status. d, Same as c in ICR Medium patients. Overall P value is calculated by log-rank test and P value corresponding to HR is calculated using cox proportional hazard regression (a-d). e, Stacked bar charts of mutational load category (top) and MSI status (bottom) per IES. f, Kaplan–Meier curves for OS (left) and PFS (right) stratified by AJCC pathological stage (I, II, III) within IES4. Stratification was not performed for stage IV due to the limited number (n = 2). g, Stacked bar chart of distribution of AJCC Pathological Tumor Stage by IES. h, Multivariate cox proportional hazards model for OS including IES (ordinal, IES1, IES2, IES3, IES4) and AJCC Pathological Tumor Stage (ordinal, Stage I, II, III, IV). P values corresponding to HR calculated by cox proportional hazard regression analysis are indicated. i, Violin plot represents TCR clonality as determined by MiXCR in ICR Medium samples. Center line, box limits, and whiskers represent the median, interquartile range and 1.5x interquartile range respectively. P value calculated by unpaired, two-sided t-test. j, Results of the multiple linear regression model showing the respective contributions of productive TCR clonality (X1) and (X2) for prediction of IES (Y). Corresponding significance of the effects are indicated in the scatter-plots (left). k, Local Polynomial Regression Fitting of productive TCR clonality by IES (ordinal variable). The gray band reflects the 95% confidence interval for predictions of the local polynomial regression model. All P values are two-sided; n reflects the independent number of samples in all panels. Overall Survival (OS). Tumor Mutational Burden (TMB). Genetic Immunoediting (GIE). ImmunoEditing Score (IES)./p> 0). d, Concordance index of optimal multivariate cox regression model per dataset. The cross-validation performance highlights the mean concordance of 10-different folds with the optimal hyper parameters (gamma and lambda) that is, the same parameters as the optimal model. e, Forest plot with HR (center), corresponding 95% confidence intervals (error bars), and P value calculated by cox proportional hazard regression analysis for OS, using: 1) the 16 S MBR score in AC-ICAM, 2) WGS R. bromii abundance 3) PCR-based R. bromii abundance, 4) 16 S Ruminococcus 2 relative abundance and 5) MBR score calculated using WGS data. f, Heat map of Spearman correlation between the relative abundance of the MBR classifier taxa in tumor samples and immune traits. Only correlations with an FDR > 0.1 are visualized. An additional row is added for Ruminococcus 2 showing all correlations, unfiltered for FDR. * The taxonomical order is indicated between brackets, as family was unassigned. g, Kaplan–Meier curve for PFS in AC-ICAM, with all patients stratified by mICRoScore High vs Low. HR and P value are calculated using cox proportional regression. h, AJCC pathological stage within the mICRoScore High group in AC-ICAM and within TCGA-COAD i, Kaplan–Meier curve for PFS in AC-ICAM, with all patients with ICR High stratified by mICRoScore. Overall P value is calculated by log-rank test and P value corresponding to HR is calculated using cox proportional hazard regression. Overall Survival (OS), Progression-Free Survival (PFS). All P values are two-sided; n reflects the independent number of samples in all panels./p>